Синхронизатор орбитального движения Луны - Страница 2


К оглавлению

2

Теперь посмотрим — не коррелируют ли с девиацией дальностей апсид периодические поправки в углах, характеризующих положение Луны на небесной сфере. Исторически, именно «расписание движения» Луны по небесной сфере представляло большой практический интерес. Поэтому главные нарушения «ровного расписания» хорошо известны, и для них даже имеется специальное название: неравенства в движении Луны. Самым значительным неравенством в долготе является т. н. большое эллиптическое неравенство, обусловленное эллиптичностью лунной орбиты; оно описывается выражением 22639І sin g [11,4], где g — средняя лунная аномалия (отсчитываемая от перигея). Остальные неравенства в долготе характеризуют возмущения самого эллиптического движения. Главное из периодических неравенств в долготе, т. н. эвекция, описывается выражением 4586І sin (2D-g) [11,4], где — разность средних долгот Луны и Солнца, или, что более наглядно, возраст Луны. Можно убедиться в том, что эвекция в точности соответствует девиации дальностей апсид, т. е. колебаниям апогейного и перигейного расстояний, которые у Брауна описываются в разложении синуса горизонтального параллакса Луны, в первом приближении, одним членом: 34І.31cos (g -2D) [4]. Действительно, амплитуда изменений горизонтального параллакса Луны, усреднённая для описания колебаний как апогейных, так и перигейных расстояний, есть d p =(1/4)(D rp +D ra)rE /(RL)2, где rE — экваториальный радиус Земли, D rp и D ra — полные изменения перигейного и апогейного расстояний, т. е. d p» 35І.84 — что почти совпадает с вышеприведённым значением, принятым у Брауна.

Вторым по величине периодическим неравенством в долготе является т. н. вариация, описываемая у Брауна как 2370І sin 2D [4]. Вариация близка к нулю в сизигиях и квадратурах и максимальна по величине в серединах между этими точками; она не отражает долгопериодическую эволюцию параметров орбиты, являясь постоянной «добавкой», не зависящей от формы орбиты. Традиционно, вариация объясняется тем, что солнечные возмущения приводят к некоторому растягиванию лунной орбиты вдоль линии квадратур. В разложении синуса горизонтального параллакса Луны имеется соответствующий вариации член: 28.І 33cos 2D [4].

Можно сказать, что эвекция и соответствующие ей изменения параллакса отражают переменные деформации лунной орбиты, а вариация и соответствующие ей изменения параллакса отражают постоянные деформации лунной орбиты. Обратим внимание: в рамках подхода на основе закона всемирного тяготения, оба этих типа деформаций обусловлены одними и теми же солнечными возмущениями. Но если причина переменных и постоянных деформаций одна и та же, то эти деформации должны быть взвимозависимы, поскольку одна часть возмущающего воздействия должна тратиться на переменные деформации, а другая — на постоянные. В действительности же эвекция и вариация совершенно независимы друг от друга. Поэтому мы подозреваем, что переменные и постоянные деформации лунной орбиты порождаются, в действительности, разными причинами.

«Невзаимная» кинематика у пары Земля-Луна.

Из вышеизложенного напрашивается вывод: движение Луны не обеспечивается действием только закона всемирного тяготения. Этот вывод не является для нас неожиданным, поскольку в предыдущих статьях мы уже рассматривали ряд феноменов (см., например, перечень в [17]), объяснение которых в рамках закона всемирного тяготения оказывается весьма проблематичным — так что предпочтительнее выглядит наша модель, в которой тяготение порождается не массивными телами, а «чисто программными средствами» [17]. Но, в случае с движением Луны, такой подход срабатывает, на наш взгляд, с особенной эффективностью.

Напомним, что, согласно закону всемирного тяготения, каждое тело притягивает каждое другое тело. При этом весьма сложно обрабатывать ситуации, когда пробное тело притягивается сразу к нескольким большим космическим телам, которые, к тому же, притягиваются друг к другу. Практически, решение задачи даже трёх тел оказывается весьма проблематичным. Напротив, принцип унитарного действия тяготения [18] радикально упрощает работу алгоритмов, обеспечивающих приобретение пробным телом ускорения свободного падения. А именно, согласно этому принципу, пробное тело всегда притягивается только к одному силовому центру, будучи в соответствующей сфере действия (или, по нашей терминологии, на склоне соответствующей частотной воронки).

Таким образом, если подходить к задаче движения Луны с мерками закона всемирного тяготения, то налицо ярко выраженная проблема трёх тел. Если же подходить к этой задаче с мерками унитарного действия тяготения, то и здесь мы усматриваем проблему, связанную с аномальной для Солнечной системы геометрией. Действительно, сферы действия планет, радиусы орбит которых подчиняются закономерности Тициуса — Боде [18], никогда не перекрываются — как мы подозреваем, именно для обеспечения беспроблемного унитарного действия тяготения [18]. В случае же Луны ситуация, действительно, аномальная: Луна движется внутри сферы действия Земли — где, по логике унитарного действия тяготения, могут двигаться лишь болванки, не имеющие собственного тяготения. Если бы Луна действительно вела себя как такая болванка, задача о её движении невероятно упростилась бы, поскольку Солнце на Луну-болванку не действовало бы, а сообщало бы ускорение только частотной воронке Земли, по склонам которой двигалась бы Луна-болванка.

2